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Abstract

Social platforms serve as central hubs for information exchange,
where user behaviors and platform interventions jointly shape
opinions. However, intervention policies such as recommender or
filtering can unintentionally amplify echo chambers and polariza-
tion, posing societal risks. Proactively evaluating the impact of such
policies is crucial, yet existing methods rely on A/B testing, which
is reactive, and also potentially risky. LLM-based social simulations
offer a safer alternative, but current approaches lack realistic inter-
vention modeling and effective feedback integration. Bridging these
gaps is essential for building interpretable frameworks to assess
and optimize platform policies. Thus, we propose PolicySim, an
LLM-based social simulation sandbox for proactive evaluation of
intervention policies. PolicySim models the bidirectional dynamics
between user behavior and platform interventions through two key
components: (1) a user agent module refined through SFT and DPO
for platform-specific realism; and (2) an adaptive intervention mod-
ule utilizing a contextual bandit with message passing to capture dy-
namic network structures. Extensive experiments demonstrate that
PolicySim effectively simulates platform ecosystems at both micro
and macro levels. Additionally, we have extensively demonstrated
the effectiveness of proactive strategy for adaptive intervention
policy. The code is available at https://github.com/renH2/PolicySim.
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1 Introduction

In today’s digital era, social platforms have become the core infras-
tructure for social interaction and information exchange [25, 28, 59].
Users’ interactive behaviors on these platforms, including infor-
mation consumption, content sharing, and social engagement, are
shaped by the intervention policies adopted by the platforms, such
as recommendation systems [29, 64, 66, 68], content filtering [52],
and exposure control [15]. Together, these factors shape individu-
als” online experiences and exert a profound influence on opinion
formation and decision-making processes [10, 15, 16].

However, due to the inherent tendency of social platforms to am-
plify information, the consequences of intervention policies often
exceed initial expectations [29, 52, 68]. Such amplification effects
are not always beneficial, as inappropriate intervention policies can
trigger unintended and sometimes harmful outcomes. For instance,
numerous studies have demonstrated that recommendation systems
can foster the emergence of echo chambers and filter bubbles [6, 10],
thereby suppressing cross-viewpoint dialogue and reducing stance
diversity [5]. At the same time, platform interventions that priori-
tize user engagement may increase polarization and conflict [49],
undermining public trust and attracting regulatory scrutiny [49].

Consequently, an important research challenge is to evaluate the
potential social impacts of intervention policies in a proactive and
systematic way before they are officially deployed. As illustrated
in Figure 1, existing evaluation methods primarily rely on the A/B
testing framework [17], which requires deploying new algorithms
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Figure 1: Compared to A/B testing, which reactively evaluates
interventions by deploying and learning only after outcomes
are observed, PolicySim proactively evaluates and optimizes
intervention policies prior to deployment using feedback
that closely mirrors real-world dynamics.

or policies directly in real user environments to collect behavioral
feedback. However, this paradigm suffers from several limitations:
(i) feedback loops are often too lengthy for rapid platform dynamics;
(ii) it is reactive rather than predictive; and (iii) more importantly,
experiments in real-world environments carry uncontrollable neg-
ative impact. Thus, reliance on A/B testing alone is insufficient for
prospective evaluations of intervention policies, motivating the
need for a safer, and more scalable alternative.

Recent advances in large language models , with their strong
generative and reasoning capabilities, offer a promising solution
by constructing controlled social simulation sandboxes. Prior ap-
proaches include traditional Agent-Based Models [22, 53] and LLM-
based agents [7, 37, 44, 65]. Both types of models have been used to
study complex social phenomena, including opinion dynamics [8],
economic systems [34], and social norm alignment [51]. Never-
theless, several challenges remain unresolved in current works. (i)
Most simulations overlook intervention policies, making their ac-
curate modeling nontrivial. (ii) Agent design often relies on prompt
engineering rather than realistic modeling of social media behavior.
(iii) How to leverage simulation feedback for optimizing real-world
intervention policies remains unclear. Addressing these problems
is critical: without intervention modeling and robust agent design,
simulations lack reliability; without effective use of feedback, they
remain at the simulation level and fail to influence real-world policy.

To bridge these gaps, we present PolicySim, a LLM-based multi-
agent social simulation sandbox deployed on X and Weibo plat-
forms. The framework comprises the user agent module and the
intervention policy module, designed to capture the bidirectional
dynamics between intervention strategies and ecosystem evolution,
as well as the influence of interventions on user behavior patterns.
Within PolicySim, we incorporate multiple types of intervention
policies (e.g., recommender systems, exposure control). Moreover, we
introduce, for the first time, a novel paradigm for training social
agents that integrates supervised fine-tuning (SFT) with DPO. This
unified approach jointly enhances the behavioral faithfulness of
agents to platform-specific user data and improves the distinctive-
ness of user intent representations. Building upon the simulation,
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Scale Relation IP. AL Env.
PolicySim |1000 v v V X & Weibo
Oasis [65] 1M v v X X & Reddit

Agentdrec [67]| 1000 v’ X Movie Rec
HiSim [45] | 700 X X X X
Stopia [70] 2 X X X -

Table 1: Comparison of our system with recent social simu-

lation frameworks. Scale: number of LLM agents; Relation:

whether follow/follower links evolve; IP/AI: presence of in-
tervention policy and adaptive interventions; Env.: underly-
ing platform (“-” means unspecified).

PolicySim employs a contextual bandit algorithm that collects re-

wards from the sandbox to optimize adaptive intervention policies,

balancing exploration and exploitation while leveraging message
passing to capture dynamic user networks. Finally, we validate the
effectiveness of PolicySim and evaluate the intervention module
with respect to predefined objectives. Comprehensive experimental
results demonstrate that PolicySim achieves highly effective policy
optimization in complex social ecosystems.

Our contributions are summarized as follows:

e We propose PolicySim, a multi-agent social simulation sand-
box that jointly models user agents and intervention policies.
To enhance simulation performance, we design a social-agent
training paradigm combining SFT and DPO, ensuring behavioral
alignment with platform data and diverse of user intents.

o We develop an adaptive intervention policy using a contextual
bandit framework that balances exploration and exploitation,
augmented with message passing to capture dynamic network
structures and information flows.

e Extensive experiments across multiple datasets verify the realism
of agent behaviors and the effectiveness of intervention opti-
mization, showing that PolicySim enables scalable and proactive
evaluation of intervention policies.

The paper is organized as follows. §2 presents the social sim-
ulation sandbox, comprising user-agent and intervention-policy
modules. Building on this sandbox, §3 introduces adaptive interven-
tion policy based on a bandit algorithm for automated feedback and
optimization. Finally, §4 evaluates the effectiveness of our frame-
work through simulation and intervention experiments.

2 Simulation Sandbox Framework

In this section, we first present the framework of PolicySim, as
illustrated in Figure 2. We primarily follow the architecture of
HiSim [45] to help us build the framework. The entire framework
consists of the user agent module (see §2.1) and the intervention
policy module (see §2.2). Each agent represents an LLM-powered
user with authentic profile, accumulates memories across simula-
tion rounds, and can simulate the interaction between intervention
policies and social ecosystem evolution.

2.1 User Agent Module

To enable LLMs to simulate social user behaviors, we equipped
agents with specialized modules including user profile, user behav-
ior, memory, training and planning. Based on these designs, agents
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Figure 2: The architecture of PolicySim is composed of two main modules: the User Agent Module and the Intervention Policy
Module. The User Agent Module contains detailed components including user profiles, memory, user relations, and behavioral
models. The bottom-left panel illustrates how we train agent tailored for social media environments to capture realistic user
behaviors. The Intervention Policy Module instantiates typical platform mechanisms such as recommendation systems and
exposure control. By simulating intervention policies within sandbox framework, the Target Reward Assessment component
evaluates their performance and provides feedback, which are further utilized to adaptively optimize intervention policy.

are empowered to emulate realistic user decision-making processes
in evolving social environments.

2.1.1 User Profile. User profiles are crucial for capturing inter-
ests, behaviors, and preferences, supporting tasks such as personal-
ized recommendation, behavior prediction, and social agent mod-
eling [48, 62, 67]. As explicit profiles are mostly unavailable, we
construct them from post content and user metadata, extracting
four high-level attributes for agent prompting:

o Likely identity: Infers social or professional roles, enabling domain-
specific terminology and perspectives.

o Interested areas: Identifies user interests from posts, hashtags,
and retweeted accounts (e.g., a user engaging with # Clima-
teEmergency is labeled with an environment-related interest).

o Posting style. Linguistic traits inferred from posts, emojis, slang,
and sentiment.

o Interaction behavior. Quantifies engagement via post/retweet ra-
tios, reply frequency, and follower/following ratios, categorizing
users by interaction roles.

Let U be the set of users. For each u; € U, we denote their profile by
¢ (u;). Details on the extraction of the four high-level attributes and
the social media metadata format are provided in Appendix A.2.

2.1.2  User Behavior. During each simulation round, agents un-
dergo behaviors calling phase, interacting with the environment
and executing various behaviors. Our agent architecture extends
conventional social interactions [44] (tweet, retweet, reply, like,
dislike, do nothing) by adding two relationship actions, follow and
unfollow, enabling the network topology to evolve dynamically in
real time according to agents’ content preferences and behaviors.

Unlike prior work [43, 44] executing a single action per round,
we implement Multiple Behavior Selection in the behavior calling
phase, capturing diverse engagement patterns and enhancing inter-
action variety to better reflect real-world social media dynamics.
Detailed definitions of behaviors and the prompts used for behavior
generation are provided in Appendix A.2.

2.1.3  Relation. The social media network is typically modeled as
dynamic graph G, = (V, E,) at simulation round ¢, where V is the
set of users and E, contains directed edges representing follow
relationships. An edge e;; € E; indicates that agent u; follows or
interacts with agent u; at round ¢. The network evolves over time,
with edges updated dynamically across rounds due to follow and
unfollow actions, yielding a time-varying topology {Gy, ...,Gr}.

2.1.4  User Stance. To model group opinion dynamics on social
media, we quantify user agents’ stances toward events using LLMs,
which capture implicit attitudes and subtle textual patterns, and
have shown high accuracy in stance detection [12, 31].

Specifically, a user’s stance at simulation round ¢ is discretely
classified as —1, 0, 1 for negative, neutral, and positive, respectively.
For user u;, the discrete stance score is inferred as:

5" (ui) = fry (p(w;), Action(u;) [: t]) € {-1,0,1}, 1

where f;, denotes the LLM conditioned on prompt 7; and the user’s
history. Further, to reduce noise from LLM hallucinations [24], we
apply an exponential moving average:

s (ui) = as" (u) + (1 - @) (uy), (2)

with smoothing coefficient @ € (0,1) and initialization s°(u;) =
§%(w;). A larger @ emphasizes past stances in the current score.
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2.1.5 Memory. Memory encodes, stores, and retrieves informa-
tion to influence future actions [2, 55]. We model user memory
with short-term and long-term components to capture dynamic
information retention and retrieval [46].

Short-term memory. This component handles temporary storage
and fast processing. Humans typically retain only the most salient
content, varying across messages and contexts. Therefore, for user
u;, the k-th short-term memory my is generated as:

mg :frz (05 ¢(ui>> mk—l)’ (3)

where ¢ is post content and f;, directs the LLM via prompt z,.
Memories are stored in memory pool {my, emb(my), t}, including
content, embedding by embedding model, and simulation round.

Long-term memory. Long-term memory retains information of
lasting significance, such as past experiences or high-level insights.
Retrieval samples memories from the pool, prioritizing those with
high semantic relevance and accounting for temporal decay:

Pr(my) o e *Sim(emb(c), emb(my)), 4)

where A > 0 is a decay rate, A; is the elapsed time, and Sim(-, -)
measures semantic similarity. Sampled short-term memory en-
tries {m} are integrated into long-term memory my via Hy =
fr (¢, ¢(u;), {m}) with f;, guiding the LLM using prompt 7.

To reduce computational cost during memory generation process,
short posts below a length threshold bypass LLM processing and
are directly added to the memory pool. Full algorithmic details are
provided in Appendix A.2.

2.1.6  Agent Training and Planning. Existing multi-agent designs
largely rely on prompt engineering. While these expert-crafted
prompts can improve plausibility, they lack alignment with real-
world social media data. Social media agents exhibit heterogeneous,
context-sensitive behaviors with long-term dependencies. There-
fore, to better capture authentic user behaviors, we train agents
directly on platform data rather than relying on prompt-based
heuristics, and we adopt a two-stage framework combining Super-
vised Fine-Tuning (SFT) and Direct Preference Optimization (DPO)
to preserve both stylistic and behavioral consistency.

SFT as cold start. Given a collection of (event, user, action)
tuples {(e;, u;, ai)}?;ll, we first construct a dataset of instruction-
action pairs Dspr = {(x;, y,—)}?ir Each instruction sequence x;
concatenates the topic description and the associated user profile,
ie. x; = [e;, ¢(u;)], which jointly defines the situational context
and the characteristics of target user. The response y; combines
observed user action with its corresponding textual content. The
policy model, parameterized by 0, is first trained to minimize the
negative conditional log-likelihood over the response sequence:
N L
Lspr(0) = - Z Z log P (yir | i, yi<30) ., (5)
i=1 1=1
where L; is the length of the response sequence for the i-th sample
and y;; denotes the ¢-th token in the sequence.

RL Post Training. With SFT as semantic grounding, we further
employ Direct Preference Optimization (DPO) [50], explicitly align-
ing the agent’s behaviours with desired social behaviors observed.

We construct a preference dataset Dppo = {(xi,y;’,yi‘j ;=1}?’:Il,
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where x; represents the same prompt used in SFT, y; denotes the
preferred response, and y; is a rejected alternative generated by
the pretrained model under the same prompt. Specifically, multiple
candidate actions for a given (e;, u;) pair are produced by prompt-
ing the base model to generate. Among these, J samples that exhibit
low semantic similarity to y} or differ in action choice are retained
as negative options to guide preference learning.

Starting from a reference policy myr initialized with the SFT
model, DPO further optimizes the policy 7y by maximizing the
DPO loss Lppo(0), formulated as:

moly” %)
”ref(y+ | x)

7o(y~ | x) ] )

& Tlref (y_ | x) '

(6)
This objective guides the policy with users’ behavioral preferences,
enabling the agent to align its responses with realistic social actions
observed in human data.

We also compared different training strategies as well as prompt-
instructed agents, the experiment results can be found in § 4. Fur-
thermore, we utilize CoT reasoning [60] to enhance the inter-
pretability of agent behaviors. In addition, we further provide a
theoretical discussion on the rationale of using LLMs for learning
compared to relying solely on ABM models as multi-agent systems,
which would produce inseparable “users” rather than realistic user
populations. Details are provided in Appendix A 4.

“Exyry)~Doro [bg o(p [ log

2.2 Intervention Policy Module

There are various types of intervention policies on social platforms,
which can have profound impacts on user behavior, information
propagation, and platform ecosystems. In this section, we introduce
commonly adopted intervention policies in social media scenarios,
along with the typical objectives these interventions aim to achieve.

2.2.1 Intervention Policy. In our work, we primarily focus on the
following two intervention policies.

Recommender System. The recommender system acts as a con-
trol mechanism for regulating information access, thereby playing a
pivotal role in shaping the dynamics of information flow within the
platform [38]. Typically, the recommender system delivers relevant
content aggregated from three primary sources [42]:

e Relational recommendation: Posts from users that an agent fol-
lows, reflecting direct social connections. A message posted at
time t becomes visible to followers at ¢ + 1.

e Personalized recommendation: The dominant channel in social
platforms, delivering content tailored to individual preferences
by prioritizing posts semantically aligned with users’ historical
behavior [35] and profile representations.

o Headline recommendation: This channel provides non-personalized
content such as trending topics or headline news, curated to
highlight widely popular information.

By combining these channels, the recommender system regulates
the information accessible to each user, shaping engagement pat-
terns and balancing individual and global exposure.

Exposure control mechanisms. Exposure control mechanisms
regulate the visibility of content to specific user groups, serving as
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a tool to simulate moderation, content prioritization, or fairness-
oriented interventions [41, 57]. Formally, for a given user u; € U,
we define its exposure probability at time step ¢ as exp(u;) € [0,1],
representing the likelihood that a post generated by u; passes the
platform’s filtering. By adjusting parameter exp(u;) for each user,
the platform can increase or suppress the exposure of particular
user groups, thereby emulating interventions such as promoting
underrepresented content, reducing the spread of misinformation,
or mitigating echo chamber effects [11].

2.2.2  Intervention Objective. The objectives of intervention poli-
cies in social media are to guide platform dynamics towards de-
sirable outcomes. Specifically, our interventions are designed to
achieve the following goals separately:

e Promote cross-viewpoint interactions. Encourage engage-
ment between users with opposing stances, fostering diverse
perspectives without increasing toxicity [44, 58].

e Mitigate misinformation. Limit the visibility and propagation
of misleading content, improving information reliability.

3 Adaptive Intervention Policy

Built on the PolicySim sandbox, we obtain feedback from multi-
agent interactions in the simulated environment. These signals
guide the adaptive optimization of the intervention policy toward
target objectives. We next formalize the problem definition.

Problem Definition: Consider a social platform S; = (U, G4, R)
at round t, where U is the user set, G, the social network induced
by user interactions, and R the intervention policy. Let p(S;) be
a utility function measuring how well the platform objectives are
achieved. As for adaptive intervention policy, agents interact under
policy R, producing feedback signals that reflect changes in p(S;).
These signals are then used to adaptively update R within the action
space A to maximize the expected utility E[p(S;)].

This problem is practically motivated. For instance, when the
intervention policy involves recommender systems, it typically
relies on large amounts of historical data for offline training [27, 30].
A key shortcoming of such policy is their inability to optimize using
interaction signals derived from multi-agent environments.

3.1 Adaptive Interventions via RL

The adaptive intervention problem can be naturally framed as re-
inforcement learning task: By interacting with the environment,
we can apply desired impact as a reward and use appropriate rein-
forcement learning algorithms to enable the agent to achieve the
maximum cumulative reward in a dynamic environment.

To enable real-time adaptation to evolving user behaviors, we
employ contextual multi-armed bandits, which provide a light-
weight and flexible framework [4, 26, 33]. Formally, intervention
process is modeled over T rounds. At each round ¢, the policy se-
lects from n arms, X’ = x!,...,x!, where each arm represents a
candidate action from the action space A. Pulling arm x! yields a
reward:r] = y(x]) + £, where i maps the arm’s context to the re-
ward, and ¢! is zero-mean noise. Following prior work [4], rewards
are bounded in [0, 1].

Action Space. The action space depends on the type of inter-
vention policy. For recommender systems, each arm represents a
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user-post pair, whereas for exposure control mechanisms, each arm
corresponds to a user-probability pair. After defining the arm type,
we construct a discrete action space by sampling candidate sets.
For recommender systems, we sample the post set Pcand C Py
from historical posts and the user set Ucand C U, preferring posts
not previously recommended. The final candidate arms are the
Cartesian product Ucand ® Pcand.

Context Design. Context embedding of each arm combines in-
formation from both the user and the post. For a user u;, we define
the context embedding as:

Xuser () = emb( [ $(us) : {m} 1), ™)

where ¢ (u;) is the user profile and {m} represents the user’s recent
memory. Xyser denotes the context embedding matrix for all users.
To capture social influence, we further propagate context embed-
dings across the social network, inspired by label propagation [71].
Let G; be the social graph with adjacency matrix A and degree

matrix D. We iteratively update user embeddings via:
Xk

user

=yxk 14 (1-y)Dlaxk] (8)

user user

where y € [0, 1] balances self-information and neighbor aggrega-
tion. After k iterations, each user embedding incorporates from
k-hop neighbors. Finally, we concatenate the propagated user em-
bedding with the post’s embedding to obtain the arm context.

Reward Assessment. The reward is equal to p(S;), reflecting the
objective of the adaptive intervention algorithm. Different inter-
vention goals correspond to different reward formulations. We here
provide reward for objectives in § 2.2.2:

(1) Promote cross-viewpoint interactions: Inspired by the com-
monly used evaluation metrics [45, 58, 65], the reward ri‘ for arm
x! balances: (1) engagement across opposing stances, (2) penaliz-
ing toxic interactions, and (3) preserving overall user engagement.
Formally, given a post-user arm x/ and the reaction o!*! from the
receiver agent (see §2.1.2), the reward for arm x!

i
¢ _ 18 (us) — 5" ()]
rp = —m——
2
balancing stance divergence between sender u; and receiver u,,
penalizing toxic reactions T(of“) € [0, 1] (via Perspective API [32]),
and weighting the reaction type by engagement through h(o!™?).
(2) Mitigate misinformation: Similarly, we compute the reward
based on the environment’s reaction. Specifically, for arm x,

is

Bl max (0,1 - s (0t™), )

rl = mis' ! (1) — mis’ (w), (10)

where mis (1) indicates whether user u is misinformed at round ¢.

Optimization Process: In the bandit optimization process, we
draw inspiration from the works [4, 26] and consider both the
exploitation and exploration framework, as detailed below.

For the exploitation aspect, actions are made based on the knowl-
edge or experience already acquired. We here use a neural network
g to learn the mapping ggr : x/ — r}, where the context of the
arms is mapped to the reward with learnable parameters §°. After
executing an arm x!, we receive the reward r! at the next simulation
epoch t + 1. Therefore, we perform gradient descent to update 6*
based on the collected feedback {xl‘ rf}



WWW °26, April 13-17, 2026, Dubai, United Arab Emirates.

In addition to exploiting the contexts, model should explore
new possibilities in unknown environments to discover potentially
better policies. Inspired by [4], we utilize neural network g4 to
estimate the potential gain in terms of reward for exploration, where
potential gain measures the discrepancy between the observed
reward and the predicted reward r; — gg: (x}). A large positive
potential gain indicates that the arm is more under-explored, while
a small potential gain suggests an overestimation of the reward,
making it less suitable for exploration.

Since the potential gain is bounded by the gradient of the pre-
dicted reward Vg, g(x}) in [4], the gradient of the predicted reward
is used as input to measure the potential gain g+ : Vo, g(x]) — rf -
got (x!). After executing an arm x?, we receive the reward r! at the
next simulation epoch t + 1. Therefore, we perform gradient descent
to update ¢’ based on the collected feedback { Vg, g(x!), ! — ggr (x!)}.
Finally, to balance exploitation and exploration, we output score
gor (x}) +Jgt (Vo,9(x!)), which is used to select the arms by ranking.

4 Experiments

In this section, we evaluate PolicySim in two stages: first, the realism
of the social simulation, and second, the effectiveness of adaptive
intervention policy. Our experiments address two key questions:

1. How valid is the simulation generated by PolicySim? We
propose several metrics to identify suitable agents for social simu-
lation and validate PolicySim at both micro- and macro-levels.

2. Can the adaptive intervention policy effectively optimize
platform outcomes? We test our adaptive intervention policy
under various objectives, showing PolicySim can leverage environ-
mental feedback to optimize policies.

4.1 Experimental Setup

4.1.1 Datasets. In our experiments, we use real-world social media
datasets: TwiBot-20 dataset [14]. TwiBot-20, collected from July to
September 2020, comprises 229K users, 33.5M tweets, and 456K fol-
low links. We extract social activity events and relevant user groups
while preserving their relational structures. In addition, we further
conduct experiments on the Weibo dataset [40]. Detailed statistics
of the dataset are provided in Appendix A.2, and the experiments
conducted on the Weibo dataset are presented in Appendix A.3.

4.1.2  Simulation evaluation metric. The evaluation metrics for the
simulation encompass both micro-level and macro-level perspec-
tives. At the micro-level, we focus on assessing whether social
agents’ decision-making behaviors align with real-world patterns.
Specifically, we evaluate four aspects:

e Content quality. We assess whether agents can produce realis-
tic content by comparing generated posts with real user posts
using multiple textual similarity metrics, including BERTScore
F1 and BertSim (BERT-based cosine similarity), to capture both
semantic and lexical closeness.

e Behaviour alignment. We measure the ability of agents to
replicate human-like behavioral actions (e.g., posting, retweet-
ing) through prediction accuracy.

o Self-consistency. We measure whether agents can correctly
identify their own generated posts by prediction accuracy, re-
flecting the self-consistency of behaviors.
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e Social capability. We further employ large language models
as evaluators (LLM-as-a-Judge) to rate each agent on three di-
mensions: (1) Engagement: the agent’s ability to participate in
natural, meaningful, and contextually appropriate interactions,
such as replying, expressing opinions, and conveying emotions;
(2) Robustness: the agent’s capacity to maintain relevance, coher-
ence, and naturalness across diverse social contexts, including
discussions, debates, humor, and trending topics; (3) Suitability:
an overall measure of the agent’s behavioral realism, reflecting
how convincingly the agent mimics authentic human activity.

Notably, Engagement and Robustness are measured from 1 to 4
ordinal scale, whereas Suitability is evaluated from 0 to 100 on
continuous scale. The detailed prompt used for the LLM-as-a-judge
evaluation is provided in Appendix A.2.

At the macro level, we measure how the distribution of user
stances evolves over time to assess whether agents collectively re-
produce realistic opinion dynamics. In addition, we examine how
intervention policies affects network-level phenomena such as po-
larization. Together, micro- and macro-level metrics provide a holis-
tic evaluation of social agents, spanning from low-level textual
alignment to high-level social and network behaviors.

4.1.3 Backbones and Baselines. We evaluate PolicySim through
both simulation and adaptive intervention experiments. For sim-
ulation, PolicySim is built upon five open-source LLMs used in a
prompt manner, including GLM4-light, Llama-3-8B-Instruct, and
the QWEN2.5 series. To examine the effect of each training compo-
nent, we conduct ablations: (1) PolicySim-¢ (without user profile
generation); (2) PolicySim-SFT (only supervised fine-tuning); and
(3) PolicySim-DPO (only DPO without SFT initialization). For inter-
vention, we compare withe-greedy and UCB bandit baselines.

4.1.4 Implementation details. In practice, we set the attenuation
coefficient « in Eq.(2) to 0.8, anduse A = 1,k = 1, g = 4, and
B = 0.5 in all experiments. For the macro-level results in § 4.2 and
Objective 1 in § 4.3, we use the social topic Anti-abortion Legislation
as the simulation context, collecting 10 trigger news items from late
June 2022 (after the overturning of Roe v.Wade) via newsapi.ai and
summarizing them with GPT-40. For Objective 2, we initialize 20%
of users to post misinformation—“#wakeupamerica who needs a
#gun registry when #obama has all your personal information”—and
observe its spread in the simulated environment.

Owing to its strong capability on social interaction, The LLM we
employ to power the user agents is Qwen2.5-3B-Instruct [56], with
a maximum context length of 32,768 tokens. For model training,
we use a LoRA adaptation of rank 64 to finetune the base model
with a learning rate of 1 x 107, batch size of 256. In the DPO stage,
we set the temperature coefficient § = 0.1, learning rate 5 X 107’
and sample size | = 3. Both stages are trained for up to 10 epochs
until convergence. All experiments were conducted on 12 NVIDIA
A100-PCIE-40GB GPUs. More details can be found in Appendix A.2.

4.2 Simulation Results

4.2.1  Micro-level evaluation. As shown in Table 2, we first report
the micro-level simulation results of PolicySim. In terms of con-
tent quality, LLM-based agents effectively reproduce the linguis-
tic and semantic characteristics of real Twitter posts, achieving
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Content quality Behavior alignment | Self-consistency Social capability
Method
BERTScore F1T  BertSim] Accuracy T Accuracy T Engagement T  Robustness T  Suitability T
Random 28.55 +4.18 74.42 +12.08 36.11 +25.30 21.20 +1.65 2.65 +0.55 2.31 +0.54 2.11 +0.14
GLM4-light [18] 46.01 +10.35 81.95 £13.64 48.33 +27.64 47.20 £27.64 2.91 £0.40 2.70 £0.57 57.64 +0.50
Llama-3-8B-Instruct [1] 46.32 +13.07 85.22 +6.81 52.36 +26.21 45.60 +25.95 3.16 +0.49 3.51 £0.50 71.85 +0.45
Qwen2.5-0.5B-Instruct [56] 46.64 +23.99 81.38 +9.03 47.78 +22.74 24.30 +19.52 2.95 +0.45 2.43 +0.57 47.22 +0.50
Qwen2.5-3B-Instruct 48.26 +12.57 85.91 +6.35 60.56 +26.87 40.40 +26.98 3.17 +0.47 2.65 +0.61 52.41 +0.50
Qwen2.5-7B-Instruct 49.48 +11.77 85.52 +6.63 50.56 + 25.60 51.20 +29.98 3.29 +0.47 2.71 +0.61 63.83 +0.48
PolicySim-¢ 45.16 +14.91 80.15 +8.23 58.33 £29.95 27.20 +21.82 3.04 +0.42 2.52 +0.57 55.17 £0.50
PolicySim-SFT 52.66 +15.53 86.77 +7.55 54.44 +22.91 56.40 +25.83 3.00 +0.42 2.42 +0.53 44.83 +0.50
PolicySim-DPO 47.95 +13.24 83.20 +8.13 53.89 +24.41 50.40 +25.37 3.14 +0.47 2.67 +0.58 61.27 +0.49
PolicySim 58.05 +15.96 88.06 +6.32 65.56 +19.71 56.00 £25.61 3.20 0.44 2.73 +0.61 59.44 £0.49

Table 2: Micro-level performance of social simulation across different backbones and PolicySim on the TwiBot-20 dataset.
Underline indicates the best result and results are averaged over five runs with standard deviations.

Objective 1

Objective 2

Method
Stance Toxicity |  Cross interactions T | Misinformation ratio |
Origin 0.014 (0.37) 0.0556 0.04 40%
e-greedy | 0.184 (0.42) 0.0426 0.14 26%
UCB 0.026 (0.34) 0.0628 0.50 30%
PolicySim | 0.376 (0.48)  0.0386 0.56 24%

Table 3: Performance of different intervention policies across different objectives. Underline indicates the best performance.

a high BertSim score and BERTScore F1, demonstrating its ability
to generate realistic, human-like text. For behaviour alignment,
PolicySim improves the accuracy of reproducing human behavioral
patterns by 8.26% over random and backbone baselines, highlight-
ing the effectiveness of modeling user interaction during agent
training. PolicySim also exhibit strong self-consistency, with an
accuracy gain of 10.15%, indicating coherence between generated
content and underlying behavioral preferences. Regarding social
capability, PolicySim achieves superior scores in Engagement and
Robustness, demonstrating its ability to emulate context-aware and
socially coherent user behaviors. Notably, Llama-3-8B-Instruct per-
forms better on Suitability, likely due to its instruction tuning or
pre-traning data that promote more socially appropriate responses.

As for the comparison between PolicySim and other baseline
models, the results reveal that the QWEN series exhibits consistent
improvements with increasing model scale across most metrics (ex-
cept for BertSim and accuracy of behavior alignment), confirming
the applicability of scaling laws in social simulation tasks. Besides,
the performance of PolicySim—¢, which removes the user profile
module, declines apparently compared to PolicySim, underscoring
the pivotal role of user profiling in shaping personalized agent
behaviors. Finally, the inferior performance of PolicySim-DPO rel-
ative to PolicySim-SFT and PolicySim indicates that supervised

fine-tuning serves as a necessary foundation for acquiring the core
structure, style, and knowledge of social interactions before apply-
ing DPO to achieve optimal performance.

4.2.2  Macro-level evaluation. We simulate real-world dynamics by
chronologically injecting trigger news events into the environment.
Each news event is designed to shift public opinion. For exam-
ple, in rounds 0 and 4, agents are exposed to news headlines “The
Supreme Court overturns Roe v. Wade” and “The Biden administra-
tion announced plans to continue covering abortion medication,”
respectively. In round 7, large-scale protests demanding federal
action to restore abortion rights are introduced. Agents supporting
Anti-Abortion Legislation are labeled as having a positive stance,
while opponents are labeled as negative.

As shown in Figure 3, the mean stance across agents exhibits a
rapid initial decline, followed by a gradual increase, mirroring the
expected public opinion trajectory. This validates the realism of our
simulation in capturing macro-level stance dynamics. Moreover,
the std. of stance scores increases over rounds, indicating a polar-
ization effect as agents form more extreme opinions. Notably, when
the intervention policy (i.e., recommender system) is applied, polar-
ization intensifies: users are increasingly exposed to homogeneous
content, reinforcing existing beliefs and amplifying divisions.
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Figure 3: Mean and Std. of stance score by different interven-
tion policies under trigger news. w/ IP. and w/o IP. indicate
whether an intervention policy is applied.

4.2.3  Scalability. Figure 4 illustrates the execution time across
different numbers of agents over 10 simulation rounds. The overall
runtime is primarily determined by the latency of LLM inference (or
API calls) and the execution of the intervention policy. As shown,
the total computational cost increases approximately linearly with
the number of agents, demonstrating the scalability and efficiency
of our system under larger-scale simulations.

17507 (2= 0.9905 /
1250
F
E 750
250 /
0 500 1000
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Figure 4: Scalability of PolicySim on the TwiBot-20 dataset,
showing linear runtime growth with agent scale (r = 0.9904).

4.3 Adaptive Intervention Policy Results

Intervention result We evaluate the effectiveness of PolicySim un-
der different intervention objectives, as shown in Section 2.2.2.

Objective 1: Promoting Cross-Viewpoint Interaction. This
objective aims to promote cross-viewpoint interactions without in-
creasing toxicity by adjusting the recommender system. In this
setting, we measure (i) the average and standard deviation of stance
scores, (ii) the overall toxicity level on the platform, and (iii) the
ratio of cross-stance interactions among all interactions.

Objective 2: Mitigating Misinformation Propagation. This
objective focuses on mitigating the impact of misinformation by
controlling the exposure mechanism. Specifically, we initialize 20%
of users to post misinformation and then measure the propagation
ratio within the simulated environment.

As shown in Table 3, for Objective 1, PolicySim significantly
increases the proportion of cross-stance interactions while simulta-
neously reducing overall toxicity. In contrast, e-greedy and UCB
also enhance cross-stance engagement but do so less precisely,
often triggering conflicts between opposing stances and thereby
increasing toxicity. The reduced standard deviation of stance scores
further indicates that PolicySim effectively enhances viewpoint
diversity. For Objective 2, by controlling the exposure mechanism,
PolicySim successfully limits misinformation diffusion according
to environment feedback, demonstrating its adaptability and broad
applicability across different intervention objectives.

Renhong Huang, Ning Tang, Jiarong Xu, & Yang Yang

5 Related Work

Multi Agent Social Simulation. LLM-driven multi-agent sys-
tems have emerged as a powerful paradigm for social simulation,
overcoming the limitations of early rule-based or psychologically in-
spired models [13, 20, 39, 54] that struggled to capture the complex-
ity and adaptability of human behavior. A pioneering effort, social
simulacra [48], introduced autonomous agents capable of human-
like reasoning and decision-making in large-scale social comput-
ing systems. Subsequent frameworks [7, 37, 44, 65] extended this
line of work by integrating multi-modal data, supporting diverse
application scenarios, and enabling scalable deployment of multi-
ple LLM-based agents within social networks. These systems have
been applied to collaborative planning and discussion, testing social
science theories [9], simulating realistic communities [47, 65], mod-
eling opinion dynamics [8], and even macroeconomic patterns [34].
Despite these advances, existing work lacks simulation authenticity
and has rarely leveraged simulations to optimize models for real-
world applications, motivating approaches that enhance both the
fidelity and practical utility of social simulations.

Social Intervention. Social intervention addresses issues aris-
ing from platforms where engagement-focused algorithms often
foster echo chambers and polarization [3, 10]. Social intervention
aims to balance engagement with the promotion of healthier, more
constructive interactions. For instance, some platforms have exper-
imented with nudging mechanisms [23], where users are prompted
to engage with content critically before sharing it. Others have
leveraged graph-based diversification techniques [21, 63, 64, 66]
to introduce heterogeneity in recommended content, preventing
the formation of insular communities [19, 69]. Several works have
utilized the llm-based environment to study the impact of different
intervention policies [44, 58]. However, most existing studies focus
on testing fixed intervention based on predefined objectives. In
contrast, our work treats intervention mechanisms as learnable
modules. By leveraging feedback from the environment, we opti-
mize intervention policies via reinforcement learning to achieve
desired objectives, providing insights for real-world strategies.

6 Conclusion

This work presents PolicySim, an LLM-driven social simulation
sandbox that enables proactive assessment and optimization of so-
cial platform interventions before deployment. On the simulation
side, we introduce intervention modules to construct realistic social
media environments and, for the first time, adapt LLMs to social
agents through training process instead of prompt engineering. To
achieve the predefined objectives, PolicySim balances exploration
and exploitation in adaptive policy learning via a contextual bandit
algorithm enhanced with a message passing mechanism. Extensive
experiments demonstrate the framework’s effectiveness in simula-
tion and the generality of the scenarios, underscoring its potential
as a novel paradigm for intervention policy design.
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A Appendix
A.1 Framework

In this section, we detail the pseudocode for the algorithm behind
PolicySim. We outline the overall procedure of PolicySim as follows
Algorithm 1.

Algorithm 1 Framework of PolicySim sandbox

Require: Twitter, historical post, total simulation round T, total
user number N.
Ensure: Initialization for X’ and Y’.
1: Initialize agents profile.
2: Initialize agents score s°.
3: Initialize G of the agents’ relationship.
4: fortin0,1,---,T do
5: foriin0,1,---,N do
6: Agent u; generates response based on its profile p(u;),
context and memory.
7. end for
8:  Obtain the ¢ — 1 round reaction.
9:  Obtain the reward r’~1.
10:  Conduct recommendation by ranking the predicted reward
gor (x1) + Gyt (Vo,g(x).
11:  Update ggr by {x!~1,rf1}.
122 Update gy by {Vo,g(x!™"), 1! = gge-1(xh)}.
13:  Update short-term memory and long-term memory.
14:  Update stance score st
15: end for

A.2 Addition Experimental Setup

Detailed statistics of Twitter dataset. For the data prepro-
cess, we first filtered relevant non-robot users from the Twibot-20
dataset[14], focusing on those associated with the "Politics" domain.
The filtering process involved selecting users who have both tweets
and neighbors. We collected key profile features such as user name,
screen name, description, account creation date, location, follower
count, friends count, and favorite count. Additionally, we limited the
tweet content to a maximum of 20 records. For the social network
relationships, we extracted follower and following information to
build a directed graph representing user connections. Below is the
statistics of the datasets used in our experiments.

Specific format of Twitter metadata We process the metadata
into the following format, with the information anonymized as
listed below.

"ID": "34209XXXX",

"profile": {
"name": "XXX",
"screen_name": "XXX_XXX",

"description": "XXX ",

"created_at": "Thu Aug 13 21:38:42 2015 ",
"followers_count": "8856 ",
"friends_count": "1182 ",
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# Node # Edges # of tweets Max Degree Average Degree Density Average Cluster Modularity Average Length of tweet

Value 924 302 20,061 14.0 0.65

3.54e-4 0.96 115.61

Table 4: Dataset statistics for Twibot-20 sampled dataset.

Ds
"tweet": ["On the birthday of our country,..."],
"neighbor": {
"following": ["74605XXXX",...1],
"follower": ["2006XXXX",...]
3

Design for extracting four high-level information

Information Extraction

Assume you are playing the role of a user
in a social network.

{Agengt ID}, {User Info}

Historical Tweets:[Tweetl:...., Tweet2:...],
Generate a concise user persona covering:
1. The likely identity of the user: .....
2. The user’s main areas of focus

3. The user’s posting style

4. The user’s interaction behavior

### Output format (JSON):

{

"synthetic_profile":

Micro evaluation metric via LLM as judge prompt

Micro Evaluation

You are an evaluator.
We want to determine whether a given agent is
suitable to act as a social agent.

You are provided with:

- **User profile informationxx

- x*Historical posts from this userxx
- x*Agent's generated responses **

Please evaluate the agent from :
1. *x*Social Engagement Ability*x:
2. *xIdentity Consistencyxx*:...
3. *xRobustnessx*

### Output format (JSON):

{

"Social Engagement Ability": "score (1-5) ",
"Identity Consistency": "score (1-5) ",
"Robustness": "score (1-5)",

"Final Judgment": "Yes/No "

3

Prompt for memory designs Below are some of our prompts for
short-term memory and long-term memory.

Short Term Memory

Assume you are a user in a social network
{synthetic_profile}

Message: {message.to_string()}

Memory: {memory[-1].to_string()}

Identify the key parts in the

message that are most relevant or important.
### Output format (JSON):

{

"short_term_memory":

Long Term Memory

| v
\.

Assume you are a user in a social network
{synthetic_profile}

Message: {message.to_string()}

Short Memory: {short_term_memory}

Summarize your long-term memory about this message
### Output format (JSON):

{

"long_term_memory" :

Prompt for calling different actions

Actions calling

The TOPIC for this simulation is "{topic}"

At the very moment, you have got several latest news
Trigger news: {News-...}

User memory: {memory_review}

Message: {recommend_message}

Have you followed the message sender: {True/False}
Generate a reaction to this message by calling:

- *xdo_nothing()**

- *x*xpost(content)*x*

- x*xretweet (content)*x

### Reasoning Guidence

### Response format(JSON):

{
[
{"action": "retweet", "content": "...... "3,
{"action": "follow"}...

]
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Additional implementation details. We further elaborate on
the hyper-parameters used and the running environment. Both
exploration and exploitation models consist of a two-layer fully
connected network with embedding size 768, hidden layer size 64,
trained with the Adam optimizer. All other parameters are the de-
fault settings from the HuggingFace library [61]. As for the running
environment, our model is implemented under the following soft-
ware setting: openai version 1.52.0, Pytorch version 2.0.2+cul21,
CUDA version 12.4, networkx version 3.2.1, transformers version
4.46.0, numpy version 1.26.4, Python version 3.10.15.

A.3 Additional Experimental Results

Robustness of PolicySim under different LLM hyperparame-
ters. We further evaluate the robustness and generalizability of our
framework by analyzing generation diversity under different tem-
perature settings (r € [0.4, 1.0]) using the Hunyuan-Lite backbone.
The results are summarized in Table 6.

Temperature (r)] 04 05 0.6 0.7 0.8 0.9 1.0
PolicySim 0.7584 0.7649 0.7614 0.7632 0.7675 0.7769 0.7523

Table 5: Robustness evaluation of PolicySim under varying
temperature parameters (7) on Hunyuan-Lite. Moderate tem-
peratures (7 = 0.9) achieve the best balance between genera-
tion diversity and semantic coherence.

We observe that moderate temperatures (e.g., 7 = 0.9) optimally
balance diversity and coherence, better approximating human cre-
ative tendencies. In contrast, lower temperatures yield overly de-
terministic and repetitive responses, while higher temperatures
induce semantic drift and reduce overall quality, as the model tends
to produce incoherent outputs.

Simulation result on Weibo dataset. When transferring the
LLM trained on the TwiBot dataset to the Weibo dataset, our ap-
proach maintains strong performance and surpasses the directly
used Qwen2.5-3B-Instruct baseline, highlighting the cross-platform
generalizability of our framework, especially in the agent training
module.

Engagement T Robustness T Suitability T
3.15£0.48 2.61£0.56  52.08+0.50
3.28+0.53 2.68+0.53  69.86+0.46

Qwen2.5-3B-Instruct
PolicySim

Table 6: Micro-level simulation result of PolicySim on Weibo
dataset.

Comparison with existing agent architectures. Direct compar-
ison between our framework and traditional paradigms such as BDI
is not entirely straightforward due to differing objectives and design
principles. Conventional agent-based modeling approaches primar-
ily focus on constructing realistic environments with handcrafted
behavioral rules and often rely on fixed message passing mecha-
nisms to mimic social dynamics. For example, many simulation
platforms restrict information propagation to explicit follower rela-
tionships or adopt recommendation systems inspired by real-world
platforms like Reddit.

Avg. Reward Avg. Toxicity LLM agents stances ABM stances

PolicySim 0.3661 0.0392 0.5064(0.3141) -
HiSim Hybrid w/ RA 0.1596 0.0487 0.5340(0.1226)  0.5067(0.1726)
HiSim Hybrid w/ Lorenz 0.1724 0.0471 0.5296(0.1187)  0.5016(0.1789)

Table 7: Quantitative comparison between PolicySim and
HiSim-based baselines under identical settings. Poli-
cySim achieves the highest reward and lowest toxicity,
demonstrating superior intervention optimization perfor-
mance.

In contrast, PolicySim not only simulates social interactions but
also leverages feedback to optimize intervention policies. For em-
pirical comparison, we integrated existing simulation platforms into
our pipeline and conducted additional experiments using HiSim [44],
a hybrid LLM-ABM framework with fixed message passing. Ten-
round simulations (five replications) were run under the same set-
tings and evaluation metrics, with stance values rescaled from
[-1,1] to [0, 1] for compatibility with the ABM setup.

As shown in Table 7, our method achieves the highest average
Reward and the lowest text Toxicity, demonstrating that learned
intervention policy fosters more meaningful interactions. We fur-
ther analyze mean and standard deviation of User Stances in
the final round to assess polarization and echo chamber effects
(standard errors in parentheses). While the baseline environment
exhibits echo chamber patterns [44], our intervention-aware model
maintains a broader stance distribution, underscoring PolicySim’s
ability to preserve opinion diversity and mitigate homogenization.

A.4 Proofs

Theorem 1. Assume the ABM propagates a belief vector e(u;) €
[0, 1] through message passing over a connected social network
A € R™" Each agent u; updates its belief by taking the average of
its neighbors’ beliefs. During propagation, all agents’ beliefs con-
verge to a homogeneous equilibrium, leading to linearly inseparable
representations across agents.
Proof for Theorem 1. Since the update mechanism for u;’s brief
averages the briefs of its connected users, the propagation process
can be defined as:
x(t+1) — D_le,

where x € R" denotes the vector of agents’ beliefs, D~! denotes
the inverse degree matrix, and D~1A acts as a stochastic transition
matrix (nonnegative entries with row sums of 1). Consequently,
the network G is equivalent to a Markov chain with transition
probabilities P = D™!A. The chain’s irreducibility and aperiodicity
follow from G’s connectivity and the presence of self-loops.

Denote the number of social simulation rounds be k. For an
irreducible and aperiodic Markov chain,

Jim Pk = lim (DA} =11,

where IT is matrix with all rows equal to the stationary distribution
7, which satisfies 7P = 7 and }}; 7; = 1. Clearly, 7 is the unique left
eigenvector of D™!A, normalized such that all entries sum to 1. By

Lemma 3.4 in [36], we conclude that II(x) = %. Therefore, the
update mechanism of the ABM gradually normalizes the differences
between briefs, leading to reduced variance (influenced by degree)

and ultimately generating indistinguishable agent roles.
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